Mixed hp-DGFEM for Incompressible Flows

نویسندگان

  • Dominik Schötzau
  • Christoph Schwab
  • Andrea Toselli
چکیده

We consider several mixed discontinuous Galerkin approximations of the Stokes problem and propose an abstract framework for their analysis. Using this framework we derive a priori error estimates for hp-approximations on tensor product meshes. We also prove a new stability estimate for the discrete divergence bilinear form.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exponential convergence of mixed hp-DGFEM for Stokes flow in polygons

Over the last few years, several mixed discontinuous Galerkin finite element methods (DGFEM) have been proposed for the discretization of incompressible fluid flow problems. We mention here only the piecewise solenoidal discontinuous Galerkin methods introduced in [5,25], the local discontinuous Galerkin methods of [12,11], and the interior penalty methods studied in [24,33,18]. Some of the mai...

متن کامل

Hp -version Discontinuous Galerkin Finite Element Methods for Semilinear Parabolic Problems

We consider the hp–version interior penalty discontinuous Galerkin finite element method (hp–DGFEM) for semilinear parabolic equations with mixed Dirichlet and Neumann boundary conditions. Our main concern is the error analysis of the hp–DGFEM on shape–regular spatial meshes. We derive error bounds under various hypotheses on the regularity of the solution, for both the symmetric and non–symmet...

متن کامل

hp-Version Discontinuous Galerkin Finite Element Method for Semilinear Parabolic Problems

We consider the hp–version interior penalty discontinuous Galerkin finite element method (hp–DGFEM) for semilinear parabolic equations with mixed Dirichlet and Neumann boundary conditions. Our main concern is the error analysis of the hp–DGFEM on shape–regular spatial meshes. We derive error bounds under various hypotheses on the regularity of the solution, for both the symmetric and non–symmet...

متن کامل

Hamiltonian discontinuous Galerkin FEM for linear, rotating incompressible Euler equations: Inertial waves

A discontinuous Galerkin finite element method (DGFEM) has been developed and tested for linear, three-dimensional, rotating incompressible Euler equations. These equations admit complicated wave solutions. The numerical challenges concern: (i) discretisation of a divergence-free velocity field; (ii) discretisation of geostrophic boundary conditions combined with no-normal flow at solid walls; ...

متن کامل

hp–VERSION INTERIOR PENALTY DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS ON ANISOTROPIC MESHES

We consider the hp-version interior penalty discontinuous Galerkin finite element method (hp-DGFEM) for linear second-order elliptic reactiondiffusion-advection equations with mixed Dirichlet and Neumann boundary conditions. Our main concern is the extension of the error analysis of the hpDGFEM to the case when anisotropic (shape-irregular) elements and anisotropic polynomial degrees are used. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2002